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A common feature among nearly all gram-negative bacteria
is the requirement for lipopolysaccharide (LPS) in the outer
leaflet of the outer membrane. LPS provides structural integrity
to the bacterial membrane, which aids bacteria in maintaining
their shape and acts as a barrier from environmental stress and
harmful substances such as detergents and antibiotics. Recent
work has demonstrated that Caulobacter crescentus can survive
without LPS due to the presence of the anionic sphingolipid
ceramide-phosphoglycerate (CPG). Based on genetic evidence,
we predicted that protein CpgB functions as a ceramide kinase
and performs the first step in generating the phosphoglycerate
head group. Here, we characterized the kinase activity of
recombinantly expressed CpgB and demonstrated that it can
phosphorylate ceramide to form ceramide 1-phosphate. The
pH optimum for CpgB was 7.5, and the enzyme required Mg2+

as a cofactor. Mn2+, but no other divalent cations, could sub-
stitute for Mg2+. Under these conditions, the enzyme exhibited
typical Michaelis–Menten kinetics with respect to NBD C6-
ceramide (Km,app = 19.2 ± 5.5 μM; Vmax,app = 2590 ± 230
pmol/min/mg enzyme) and ATP (Km,app = 0.29 ± 0.07 mM;
Vmax,app = 10,100 ± 996 pmol/min/mg enzyme). Phylogenetic
analysis of CpgB revealed that CpgB belongs to a new class of
ceramide kinases, which is distinct from its eukaryotic coun-
terpart; furthermore, the pharmacological inhibitor of human
ceramide kinase (NVP-231) had no effect on CpgB. The char-
acterization of a new bacterial ceramide kinase opens avenues
for understanding the structure and function of the various
microbial phosphorylated sphingolipids.

Gram-negative bacteria have a three-layered cell envelope
composed of the inner membrane, a thin layer of peptido-
glycan cell wall, and an outer membrane. A key component of
the outer membrane is lipopolysaccharide (LPS) (1). LPS is an
essential molecule in nearly all gram-negative species due to its
roles in barrier formation and membrane integrity (2). While
the general structure of LPS is well conserved, there is
considerable variation between and within species (3). LPS can
be divided into three structural domains: (1) lipid A, a
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membrane-anchored multiacylated oligosaccharide, (2) the
core oligosaccharide, often containing 3-deoxy-d-manno-oct-
2-ulosonic acid (Kdo), which is generally conserved within a
species, and (3) the polysaccharide O-antigen, which is highly
variable, even among strains of the same species. In many
organisms, like Escherichia coli, the lipid A portion of LPS is
negatively charged due to the presence of phosphate groups on
the glucosamine disaccharide (3). These phosphates are the
binding sites for cationic antimicrobial peptides like poly-
myxins (4, 5). While LPS is generally considered to be essen-
tial, LPS-null mutants of several gram-negative organisms have
been isolated including Acinetobacter baumannii (6), Morax-
ella catarrhalis (7), Neisseria meningitidis (8), and Caulobacter
crescentus (9). The ability of C. crescentus to survive in the
absence of LPS is, in part, due to the presence of the anionic
sphingolipid ceramide-phosphoglycerate (CPG), as sphingoli-
pid synthesis becomes essential in the LPS-null mutant (9). In
contrast to E. coli, the mature lipid A molecule in C. crescentus
is not phosphorylated; instead, the phosphate groups are hy-
pothesized to be removed by the phosphatase CtpA (9) and
replaced with galactopyranuronic acid (10). Whereas poly-
myxin antibiotics target the phosphorylated lipid A in E. coli,
antibiotic sensitivity assays demonstrated that cationic anti-
microbial peptides kill C. crescentus by interacting with the
anionic CPG lipids (9). Synthesis of the CPG head group is
sequentially catalyzed by the three proteins CpgABC
(CCNA_01217-01219) (9) (Fig. 1A). Deletion of cpgB
(ccna_01218) results in the loss of ceramide 1-phosphate
(C1P), which is consistent with its annotation as a putative
lipid kinase (9) (Fig. 1B).

C1P has important physiological roles in eukaryotes
including mast cell activation, phagocytosis, cellular prolif-
eration, and survival (reviewed in (11)). Human ceramide
kinase (hCERK) uses ceramide and ATP as substrates to
produce C1P (12). The ceramide kinase (CERK) enzyme is
part of a larger family of lipid kinases including sphingosine
kinase and diacylglycerol (DAG) kinase. A bacterial dihy-
drosphingosine kinase has recently been identified in Por-
phyromonas gingivalis (13); however, to our knowledge, this is
the first described bacterial CERK enzyme. In this study, we
used purified C. crescentus CpgB to characterize its CERK
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Figure 1. Identification of CpgB as a putative ceramide kinase. A, pre-
vious genetic analysis of the cpgABC genes led to a proposed mechanism
for ceramide-phosphoglycerate (CPG) synthesis (9). B, extracted-ion chro-
matograms show the presence or absence of ceramide and C1P. Total lipids
were extracted from the indicated strains and analyzed by normal phase
LC/ESI-MS in the negative ion mode. The signal for the C1P peak was
magnified 10-fold since this lipid is only a minor component of the Cau-
lobacter crescentus lipidome. This figure is a representative chromatogram
(n = 2). C1P, ceramide 1-phosphate; CPG, ceramide-phosphoglycerate; LC/
ESI-MS, liquid chromatography electrospray ionization mass spectrometry.

CpgB is a bacterial ceramide kinase
activity. Phylogenetic analysis comparing various lipid kinases
suggests that bacterial CERK enzymes form a distinct clade
from their eukaryotic counterparts.
Results

CCNA_01218 is a bacterial CERK

Most gram-negative bacteria require LPS in the outer
membrane for survival. A recently isolated mutant of
C. crescentus is capable of surviving without LPS, largely due to
the presence of the anionic sphingolipid CPG (9). Genetic
2 J. Biol. Chem. (2023) 299(7) 104894
analysis identified three genes (ccna_01217-01219) that were
required for synthesizing the phosphoglycerate head group.
CCNA_01218 (CpgB) is annotated as a lipid kinase–related
protein, and deletion of cpgB resulted in a loss of C1P
(Fig. 1B) (9), consistent with cpgB encoding a bacterial CERK.
To determine the enzymatic activity of CpgB, we purified the
His-tagged recombinant protein from E. coli (Fig. 2) and
performed kinase assays. CpgB could readily phosphorylate
C16-ceramide (Fig. 3A) as well as a fluorescent NBD-C6-
ceramide (Fig. 3B). The identity of the phosphorylated NBD-
ceramide product was confirmed by mass spectrometry
(Fig. 3C). Since CpgB has a conserved LCB5 DAG kinase
domain, we tested whether CpgB could phosphorylate DAG to
produce phosphatidic acid (PA) and found comparable activity
(Fig. 3, A and B). Although CpgB can produce PA in vitro, the
C. crescentus lipidome contains only �1% PA (14) and deletion
of cpgB had no effect on PA levels (Fig. 3D). Therefore, we
conclude that ceramide is the preferred in vivo substrate for
CpgB. Owing to their ease of use, NBD-labeled lipid substrates
have been used to characterize the activities of ceramide gly-
cosyltransferases (15), PA phosphatase (16), hCERK (17), and
bacterial dihydrosphingosine kinase (13); similarly, the
remainder of the kinase assays described below use the NBD-
ceramide substrate.

Influence on pH and divalent cations on CpgB activity

To characterize the requirements for CpgB activity, we
measured C1P production over a pH range from 4.5 to 10; the
optimal activity was observed at pH 7.5 (Fig. 4A). By contrast,
hCERK has optimal activity at pH 6.5 (12, 17). Since hCERK
activity increases strongly in the presence of magnesium or
calcium (12), we tested CpgB’s dependence on divalent cat-
ions. In the absence of any cations, we did not observe pro-
duction of C1P (Fig. 4B). Both magnesium and manganese
strongly increased CpgB activity, with smaller effects
observed in the presence of zinc or cobalt (Fig. 4C). In
contrast to hCERK, calcium did not stimulate CpgB activity
(Fig. 4C).

Determination of CpgB kinetic parameters

Using the NBD-ceramide substrate, we measured C1P
production over a 2-h period to identify the linear range of
activity for subsequent determinations of enzyme kinetic pa-
rameters (Fig. 5A); unless otherwise noted, all remaining ki-
nase assays were performed for 30 min in the presence of Mg2+

at pH 7.4. The enzyme exhibited typical Michaelis–Menten
kinetics with respect to NBD-C6-ceramide (Km,app = 19.2 ±
5.5 μM; Vmax,app = 2590 ± 230 pmol/min/mg enzyme) and
ATP (Km,app = 0.29 ± 0.07 mM; Vmax,app = 10100 ± 996 pmol/
min/mg enzyme) (Fig. 5, B and C). We are reporting apparent
Km and Vmax values since CpgB has two substrates and per-
forms a Bi-Bi reaction; under these conditions, the concen-
tration of each substrate affects the apparent kinetic
parameters of the other. Additionally, the kinetic parameters
determined using the NBD-ceramide substrate are likely to
differ from the true physiological constants and cannot be used
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Figure 2. Purification of CpgB. His-tagged CpgB was expressed and pu-
rified from Escherichia coli. An SDS-PAGE gel of recombinant CpgB was
stained with Coomassie blue to assess protein purity. CPG, ceramide-
phosphoglycerate.

CpgB is a bacterial ceramide kinase
to make any definitive conclusions about intracellular sub-
strate concentrations.

Bacterial and eukaryotic CERKs are phylogenetically distinct
enzymes

Given the observed enzymatic differences between hCERK
and CpgB, we considered whether these two enzymes are
evolutionarily related. Sequence alignment shows limited
agreement (12.5% identity and 22.5% similarity); four of the
five sphingosine kinase conserved domains show some ho-
mology between the eukaryotic and bacterial kinases (Fig. 6A)
(12). The two kinases also share a conserved GGDG motif,
which is involved in ATP binding (18). However, the eukary-
otic CERKs have an absolutely conserved CxxxCxxC motif that
is required for enzyme activity (19) but is absent from CpgB.

To further assess the functional similarity between the
CERKs, we treated CpgB with the hCERK inhibitor NVP-231
(20). NVP-231 is a competitive inhibitor of ceramide binding
and inhibits 90% of hCERK activity at 100 nM (20). By
contrast, 100 nM NVP-231 had no significant effect on CpgB
activity (Fig. 4B). When the concentration was increased to
300 nM, we observed only a modest 20 to 25% inhibition
(Fig. 6B), suggesting that CpgB may have a distinct active site
from hCERK.
Several enzyme families are capable of phosphorylating
sphingolipids and DAG. To visualize the similarity of CpgB to
these enzymes, we performed a maximum-likelihood phylo-
genetic analysis and included representative proteins from the
following families: hCERK, yeast DAG kinase Dgk1 (21), bac-
terial dihydrosphingosine kinase dhSphK1 (13), and bacterial
phosphatidylglycerol kinase YegS (22). Each of these enzymes
formed a distinct clade despite having overlapping activities
(Fig. 6C). We did find several cyanobacterial enzymes with
homology to hCERK as well as some green algae with homo-
logs of YegS; CpgB homologs were only found in bacterial
species. Further analysis of the CpgB-encoding organisms
revealed that nearly all genera with the cpgB gene either pro-
duce or encode the genes required for sphingolipid synthesis
(23) (Fig. 6D).
Discussion

Bacterial sphingolipids have a wide range of head groups
including sugars (24–26), phosphoglycerol (27), phospho-
glycerate (9), and phosphoethanolamine (28). These modifi-
cations likely determine the physiological functions of the
respective sphingolipids. For example, phosphoglycerol dihy-
droceramide produced by P. gingivalis promotes osteoclasto-
genesis through its interactions with nonmuscle myosin II-A
(27). In the case of C. crescentus, production of the anionic
CPG enables survival in the absence of LPS (9). Genetic ana-
lyses using single-gene deletion mutants led to the identifica-
tion of three enzymes required for CPG synthesis and
suggested that the first step is catalyzed by CpgB, a putative
CERK. In this report, we used recombinant CpgB expressed
and purified from E. coli to confirm its CERK activity and
analyze its enzymatic properties.

CpgB differs from the human CERK with regards to divalent
cation specificity, susceptibility to the inhibitor NVP-231, and
kinetic parameters. For comparison, the Km,app’s for CpgB are
19 μM and 0.29 mM for ceramide and ATP, respectively,
whereas the reported Km’s for hCERK are 187 μM and 32 μM
(12).

From a structural perspective, hCERK activity is observed in
cellular membrane fractions despite not having any predicted
transmembrane domains; one explanation is that the N-ter-
minal pleckstrin homology domain interacts with membrane
phosphatidylinositol molecules (12). By contrast, CpgB purifies
as a soluble protein without the use of detergents and is pre-
dicted to be a cytoplasmic protein (29). Consistent with these
biochemical findings, phylogenetic analysis suggests that the
bacterial CERK forms a unique subfamily of lipid kinases,
distinct from eukaryotic CERK. Broad conservation of CpgB
across many classes of bacteria suggests that phosphorylation
may be a common sphingolipid modification.

Until recently, the genes responsible for specific ceramide
modifications were unknown. As a result, various studies
broadly determined the importance of total sphingolipid
production by knocking out the spt gene and assessing phe-
notypes related to survival or virulence (28, 30, 31). With the
discovery of enzymes required for sphingolipid glycosylation,
J. Biol. Chem. (2023) 299(7) 104894 3
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Figure 3. Cpg has ceramide kinase activity. A, recombinant CpgB was used to phosphorylate C16-ceramide or DAG. 32P incorporation was monitored by
TLC and phosphorimaging. This TLC result is a representative image (n = 3). B, the substrate specificity of CpgB was analyzed using fluorescent NBD lipid
substrates as indicated. This TLC is a representative result (n = 3). C, production of the phosphorylated NBD-ceramide product was confirmed by negative
ion ESI/MS analysis. D, negative ion ESI/MS analysis of lipid extracts from WT and ΔcpgB strains shows no difference in phosphatidic acid (PA) levels. CPG,
ceramide-phosphoglycerate; DAG, diacylglycerol; ESI/MS, electrospray ionization mass spectrometry.

CpgB is a bacterial ceramide kinase
phosphorylation, and other modifications (9, 13, 24, 26), we
can now dissect the roles of specific head group modifica-
tions. The characterization of a new bacterial CERK opens
avenues for understanding the structure and function of the
various microbial phosphorylated sphingolipids.
Experimental procedures

Cloning His-tagged CpgB

The cpgB gene was amplified from C. crescentus genomic
DNA using primers EK1462 (tatattcatATGCTTCGTCGTG
CACGCCATCC) and EK1464 (tactgaattcTCATCCGACC
AGGAACCGCAAGGC) and ligated into the NdeI/EcoRI site
of plasmid pET28a to generate an N-terminal His-tagged
fusion. The resulting plasmid was verified by Sanger
sequencing and transformed into E. coli strain BL21(DE3) for
expression and purification.
4 J. Biol. Chem. (2023) 299(7) 104894
Purification of CpgB
A 1 l culture of E. coli BL21(DE3) cells carrying the pET28a-

cpgB plasmid was grown in LB broth with 30 μg/ml kanamycin
at 37 �C with shaking to an A600 of 0.6. IPTG was added to a
final concentration of 0.5 mM, followed by induction at 16 �C
for 18 h. The cells were collected by centrifugation at 10,000g
and resuspended in 12.5 ml of buffer containing 0.5 M sucrose
and 10 mM Tris, pH 7.5. Lysozyme was added to a final
concentration of 144 μg/ml, and the suspension was stirred on
ice for 2 min. A total of 12.5 ml of 1.5 mM EDTA was added
with stirring for an additional 7 min to induce plasmolysis. The
cells were collected by centrifugation at 10,000g for 10 min,
and the pellet was resuspended in lysis buffer (20 mM Tris, pH
7.5, 0.5 M NaCl, and 10 mM imidazole) prior to lysis via 2 to 3
passages through a French press (20,000 psi). The lysate was
centrifuged at 8000g for 10 min to remove unbroken cells. His-
CpgB was purified using an ÄKTA start FPLC system and a
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CpgB is a bacterial ceramide kinase
1 ml HisTrap HP column (Cytiva). After loading, the column
was washed with lysis buffer prior to elution via a linear
gradient to 1 M imidazole. Protein elution was monitored by
A280, and fractions were collected and analyzed by SDS-PAGE
followed by Coomassie blue staining. Fractions containing the
purified CpgB were combined and dialyzed into 10 mM Tris,
pH 7.2, 0.1 M NaCl, 2 mM EDTA, 1 mM DTT over 48 h at
4 �C. The dialyzed protein was concentrated using an Amicon
Ultra centrifugal filter (10 kDa molecular weight cutoff)
(Millipore Sigma). The protein concentration was determined
using the BCA Protein Assay Kit (Pierce).
0.0 0.2 0.4 0.6 0.8 1.0
0

ATP (mM)

A

Figure 5. CpgB enzyme kinetics. The kinetic parameters of CpgB were
measured using the C6-NBD ceramide substrate. A, CpgB activity was
measured as a function of time (n = 3, error bars are SD). B and C, Michaelis–
Menten kinetic parameters were determined for CpgB (n = 2, error bars are
SD). B, to determine the Km,app for ceramide, ATP concentration was held
constant (1 mM) while NBD-ceramide concentration varied. C, the Km,app for
ATP was determined by holding the NBD-ceramide constant at 160 μM
while varying the ATP concentration. Km,app values were 19.2 ± 5.5 μM and
0.29 ± 0.07 mM for NBD-ceramide and ATP, respectively. Vmax,app values
were 2590 ± 230 pmol/min/mg enzyme and 10,100 ± 996 pmol/min/mg
enzyme for NBD-ceramide and ATP, respectively. CPG, ceramide-
phosphoglycerate.
CpgB kinase assay using C16-ceramide

CpgB kinase activity was measured for 30 min at 30 �C as
described previously for E. coli DAG kinase (32). The reaction
mixture contained 50 mM imidazole–HCl, pH 6.6, 50 mM
octyl-β-D-glucopyranoside, 50 mM NaCl, 12.5 mM MgCl2,
1 mM EGTA, 10 mM β-mercaptoethanol, 1 mM cardiolipin,
0.1 mM ATP (1000 cpm/pmol), and 0.8 mM ceramide or DAG
in a total volume of 20 μl. The radioactive products (PA or
C1P) are chloroform soluble and were separated from the
remaining radioactive substrate by a nonacidic chloroform/
methanol/MgCl2 (1 M) phase separation. The chloroform
soluble products were separated by TLC using a chloroform/
J. Biol. Chem. (2023) 299(7) 104894 5
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designate proteins of bacterial or eukaryotic origin. D, the phylogenetic tree of the bacterial CpgB homologs is color coded to indicate which genera have
members with either experimental evidence (pink) or genetic evidence (green) of sphingolipid production. Genetic evidence indicates that the genus has
members with all three required enzymes for sphingolipid production: Spt, bCerS, and CerR. CPG, ceramide-phosphoglycerate; hCERK, human ceramide
kinase.
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methanol/water (65:25:4, v/v) solvent system and visualized by
phosphorimaging.

NBD-CERK assay

The NBD-CERK assays were carried out largely as previ-
ously described for hCERK (12, 17). Briefly, the reaction was
carried out in a buffer containing 20 mM Hepes (pH 7.4),
10 mM KCl, 15 mM MgCl2, 10% glycerol, 1 mM DTT, 1 mM
ATP, 0.2 mg/ml fatty acid-free bovine serum albumin, and
10 μM C6-NBD ceramide (added from a 10 mM ethanol
stock) (Thermo Fisher Scientific). The reaction was started by
adding 0.025 μg/μl of the CpgB enzyme. Tubes were incu-
bated in the dark at 30 �C for the indicated times. After the
incubation, 1 μl of the reaction mixture was spotted onto
silica gel 60 TLC plates. The spots were resolved in a solvent
6 J. Biol. Chem. (2023) 299(7) 104894
system containing butanol/acetic acid/water (3:1:1, v/v). The
dried TLC plates were visualized using the GFP filter set on a
Bio-Rad ChemiDoc. To test the specificity of CpgB, we per-
formed the reaction under identical conditions using 1-NBD-
decanoyl-2-decanoyl-sn-Gly (NBD-DAG) (Cayman Chemical)
as the substrate. Inhibition of CpgB activity was performed by
adding the indicated concentrations of NVP-231 (Cayman
Chemical) to the reaction prior to addition of the enzyme.
Lipidomic profiling and confirmation of ceramide-phosphate
production by LC/MS/MS

Lipids were extracted from bacterial cells or the NBD-
ceramide CpgB reaction using the method of Bligh and Dyer
with minor modifications (33). The lipid extracts were
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analyzed by normal phase LC/MS/MS in the negative ion
mode as previously described (34, 35).

Kinetic analysis of CpgB

To determine the kinetic constants for CpgB, activity
assays were performed for 30 min as described above while
varying substrate concentrations. To determine the Km,app

for ceramide, ATP concentration was held constant (1 mM)
while NBD-ceramide concentration ranged from 0.625 to
160 μM. The Km,app for ATP was determined by holding the
NBD-ceramide constant at 160 μM while varying the ATP
concentration from 0.031 to 1 mM. Product formation was
measured from the fluorescent images using ImageJ (36)
and quantified using a standard curve of NBD-ceramide
spotted onto the TLC plates. The enzyme activity was fit
to the Michaelis–Menten equation using OriginPro
(OriginLab).

Assessing the pH optimum and the requirement for divalent
cations

To test the effect of pH on CpgB activity, a standard reaction
mix was made containing 10 mM KCl, 15 mM MgCl2, 10%
glycerol, 1 mM DTT, 1 mM ATP, 0.2 mg/ml fatty acid-free
bovine serum albumin, and 10 μM C6-NBD ceramide. The
pH was controlled by adding the following buffers: pH 4.5 to 6
(100 mM citrate), pH 6.5 to 7.5 (100 mM Mops), pH 8 to 9
(100 mM Tris–HCl), and pH 10 (100 mM borate). The re-
actions were started with the addition of 0.025 μg/μl of CpgB
and allowed to run for 30 min. Phosphorylated product was
quantified as above. The efficacy of various divalent cations
was tested by replacing the MgCl2 with 15 mM CaCl2, ZnCl2,
MnCl2, CuCl2, or CoCl2 and determining CpgB activity at pH
7.4 as described above.

Phylogenetic analysis of lipid kinase enzymes

Using CCNA_01218 (CpgB; Accession YP_002516591.3)
protein as a query, we performed BLASTP searches to find
related proteins in the NCBI database (37). The top hits were all
from species closely related to C. crescentus, so we repeated the
search excluding Alphaproteobacteria to get a wider range of
organisms. Candidate hits were chosen using an E-value cutoff
of 1E-20 and we manually curated the list to select the top �60
hits from different genera. A similar method was used to find
homologs of hCERK (Accession NP_073603.2), P. gingivalis
dihydrosphingosine kinase (Accession AAQ66413), E. coli YegS
(Accession NP_416590), and Saccharomyces cerevisiae Dgk1
(Accession QHB11896.1). A total of 397 protein sequences were
aligned using MUSCLE aligner (38). Phylogenetic trees were
prepared using Randomized Axelerated Maximum Likelihood
(RAxML, version 8.2.12) (39) with 100 bootstraps and a
maximum-likelihood search. RAxML was run on the CIPRES
Portal at the San Diego Supercomputer Center (40). Phyloge-
netic trees were visualized in R using the packages ggtree (41),
ape (42), treeio (43), and ggplot2 (44). To determine which
cpgB-encoding bacterial genera produce sphingolipids, we
performed a literature search as well as used the RIKEN JCM
catalog (https://jcm.brc.riken.jp/en/). For genera with no
experimental evidence of sphingolipids, we used BLASTP to
determine whether these genera encode all three key enzymes
for sphingolipid synthesis: Spt (Accession A0A0H3C7E9.1),
bCerS (Accession A0A0H3C8X0.1), and CerR (Accession
A0A0H3C8X7.1).
Data availability

All of the data for this work is contained within the
manuscript.
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